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Nonlinear KvulutIon und Saturation of an 

Unstable Electrostatic Wave 

* t ++ 
li. 1). Fried,  C. S. Liu,  R. W. Means, and K. Z. Sagdeev 

University of California, Los Angeles, California 90024 

Abstract 

The nonlinear development ami saturation of a single Langmuir 

wave driven unstable by a gentle bump In the tail of the distribution 

function In a collisionless plasma is studied by treating the resonant 

particles numerically.  Over a wide range of parameter values, the 

amplitude of the potential (|> Is found to saturate at such a level 

that the ratio g " OJ,^ = 3.2, where i^ = (ek2(|)/m)1/2 is the bounce 

frequency of the trapped particles In the wave trough and y    is the 

linear growth rate, approximately given by the classical Landau 

value.  In view of the importance of inverse Landau damping for many 

instabilities, this work should have wide applicability and the 

results should be suitable for direct experimental tests. 
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We report here the result of  a study of  the evolution and saturation of 

a Langmulr wave driven unstable by  the resonant particles whose velocities 

are near  the wave  phase velocity with a "gentle bump-in-tall" distribution. 

The method  used represents a new approach  to computer  stimulation of  a 

plasma  in  that only a small  fraction of the particles,   the resonant  particles 

(i.e..   trapped and nearly trapped  particles   in the nonlinear  stage),  are 

followed  numerically,   the remainder being  treated analytically.(1)     In the 

linear  theory,  the interaction of  the wave with the resonant  particles in 

the bump leads  to the well-known Landau growth of the wave.(2) 

As  the unstable wave grows,   the nonlinear effects become  important.     If 

the spectrum of unstable waves  is  sufficiently wide,   then  the nonlinear 

development  can be adequately described by the quasi-linear  theory,(3)  in 

which the  trapping of  the particles by the wave field  is neglected.     If, on 

the other hand,   the  spectrum of  the unstable modes  is  narrow,   either  because 

the linear growth rate is a  peaked  function of wave number or due  to initial 

conditions,   then a  single mode dominates and   the trapping of   the resonant 

particles  is frequently the most  Important nonlinear  effect. 

The effects of  the trapped particles on  the damping of  a single large 

amplitude Langmulr wave have been  previously  studied with anal;   tc methods. (4) 

In  these analytic  treatments,  however,   it   is  assumed  that both  the amplitude 

and  the phase of  the wave are constant  in time  (y^  «  1).     With  these 

approximations, many aspects of  the nonlinear wave-particle  interaction 

which are  important  in the case of  unstable waves,  such as  the effect  of 

transition between the trapped states and untrapped states  (trapping and 

detrapping)     and  the ad.abatic heating and cooling of   the  trapped  particles 

due to  the amplitude variation, are neglected.     In the  present work,  we 



follow   the evolution of  an unstable wave by  treating  the dynamics of   the 

resonant   particles  numerically;   It   Is thus  possible  to  allow both  the ampli- 

tude and  the phase of   the wave  to vary  in time,  as dictated by Poisson's 

equation.   I.e.,   to study  the  complementary case  Y  /^ 1   . where u.      is ' o    DO ^ bo 

oü. at t = 0.  The nonlinear phase shift, varying on the same time scale as 

the amplitude, is particularly significant in affecting the nonlinear 

evolution and saturation as well as in conserving the energy in the wave 

frame.  Neglecting the phase shift in the nonlinear stage, as assumed in a 

recent work,   leads to an erroneous conclusion on saturation. 

The bulk of the electrons (nonresonant particles) are adequately de- 

scribed by the usual linear approximation, even at the time of saturation, 

so they appear simply via a dielectric constant which modifies the field 

produced by the resonant particles. Their thermal velocity is assumed to be 

so small compared with the phase velocity of the wave, U • U) IV.,   that they 

can be approximated by a cold fluid with dielectric function 

e(cü,k) - 1 - (u, /co)2   . (1) 

For  the  resonant   particles,  we  assume a  distribution uniform In  space and 

linear   in velocity over a range -6v < v-U  = w <  6v   : 

(a/26v)(l+0w/6v) for   Iwl   <  6v 
fR(v) (2) 

0 for   |w|   >  6v 

where  w  Is the velocity in the initial wave frame; a is the fraction of 

the resonant particles compared to the bulk electrons; ß is the fractional 

change in f  from v-U  to v • U t 6v ; and  6v  is typically chosen to 

be of order 10 (y /k) so that there remain untrapped resonant particles in 

the nonlinear stage.  This "single-wave approximation" is valid for such a 

broad gentle bump, where one would expect many modes to grow, if a single 
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wave with amplitude sufficiently above the thermal noise level Is launched 

Into the system Initially, with »lectrlc field E = E sin kx and a corre- 

sponding perturbation  in  the charge density of   the nonresonant  particles: 

Pvio(x)  "  P  (0)   cos kx    where    p  (0)   = kt fttt   .     The  evolution of  the wave  in NK o oo 

time   is described by Polsson's equation 

c(üj,k)  E(u),k)   - 47t[po(a),k)   + pR(a),k)]/ik (3) 

where    p       is  the charge dens'ty of   the resonant  particles.     Transforming 

back  to  the  tine domain and  using Eq.   (1), we have 

-iu)  t -iw  t 
E(k.t)  -  (E /21)  e       P    +  (4TT/lk)lpD(t)  +  (co  /2i)   e      p 

O K p 

1 lU)   t' 
dt e    p    PR(t')) 

(A) 

where the solution with phase velocity -U has 'jeen dropped because it 

cannot have significant interaction with the resonant particles which have 

v = U . The charge density of the resonant particles is given by 

N  -ikx (t) 
p (t) = (omq/N)  I e   J (5) 

j-l 

where    n    is   the total  particle density and    x  (t)     is  the  instantaneous 

position of   the j       resonant  particle.     It  is  convenient  to  express    x.(t) 

in  terms of   the deviations,   z,,  from  the unperturbed orbit of   the j 

particle with  initial  velocity    U + w,   :    kx.  « w t + üJ.  + z,    where    \li,  = 
j     j   P    J   j        J 

k(x,     + w.t)  is the unperturbed phase in the initial wave frame. Since the 
Jo   J 

time scale for the energy transfer between the wave and resonant particles, 

typically of the order of the inverse growth rate or bounce frequency, is 

much longer than the plasma period 'J   , it is convenient to remove the 
P 

explicit factor exp(-iw t)  from Eqs. (A), (5), by setting  PD(t) = 
P K 

exp(-iui t) p(t) and  E(k,t) - F(E /21) exp(-iu; t) .  Note that  F is in 
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general  complex.    F(t)   =  |F|  exp[l$(t)]    with    F(0)  = 1   .    Choosing the 

Initial  bounce  time    ^   ,  as a unit of  time,     k"A    as a unit  of distance. 

we have  the  following dimensionless  Poisson equation: 

lw  t ' 
(2iE(k,t)/Ej   e     P    i F(t)   =  1  +  (2aU  /N)   [S(t)  +  (U/2i)    I  dt'   SU')] 

0 

with (6) 

N   -m +z) 
S(t)  =    [    e        J    J . (7) 

j-1 

The equation of  motion  is 

z    =  (F/2i)  e   '  J     J    + c.c. (8) 

The initial  conditions  for (8)  are z   (0)  - i  (0)  - 0.    To simulate the 

distribution function of  the resonant  particles,  Eq.   (2), we choose the    ill 
jo 

to be Nz uniformly spaced points on  the  interval   (0,2TT):     ty.     - 2Tril/N 
XO Z 

0 <  S, <   (Nz-1)   .     For  each    l//^   . we  choose Nv values of w    on the  interval 

(-6v,6v),  selected to correspond  to tha resonant particle distribution 

function,  Eq.   (2): 

w /äv =  [(1 -   1/8)2 + 4J/eNv]1/2 - 1/ß . (9) 

It will be shown in the following that  this distribution of N - N N 
z v 

discrete particles does give approximately the same linear growth rate and 

frequency  shift  as  the  continuum distribution,   Eq.   (2). 

Linear Theory 

For  sufficiently  early times,  we can linearize not only  the nonresonant 

particle motion but also  that of  the resonant particles, whereupon (6)  and 

(8)  lead  to  the usual multi-beam dispersion relation 



e1(v) - i - (aU3/2Nvv) IJ'CV-WJ)"
2
 = 0 (10) 

where the sum Is carried out only over the N different values of w given 
v j 

by Eq.   (9). 

In  the continuum  limit  (Nv -*■ =»),  corresponding  to  the choice  (2)   for 

fR,  the  integration over w in (10)  gives 

..3 
i \      ,      2au 

e2(v) ■1-^r 
vg + 6v      .  ß    ,      v-6v 1 

,2_(6v)2
+^^^|   =0 (ID 

v 

If    6v  « v   ,  we expand the  terms  in brackets  in powers of 6v/v  , 

obtaining  to leading order  the usual single beam dispersion relation.     This 

case has recently been studied by O'Neil et al.(1) with an approach similar 

to ours.     In the limit    6v » v  , we can expand  in powers of    v/6v   , 

obtaining 

H^-^—t   ti-if+f^  »-[(v/av)3] )     . (X2) 
v(ov) 

The only root of  e. = 0  is 

v = YL(i-2/ire)[l + ^/TTöV]"
1 (13) 

where 

YL =f U2 f0VU) u    - TOßU3/4(6v)2 (U) 

is just  the Landau value   (in our dlmensionless  units)  with f  '(U)  computed 

from Eq.   (2). 

We see from Eq.   (13)   that  the growth rate is approximately the Landau 

value provided YL/<5V «  1   .    The deviation of ^  from the Landau value y 

and the nonvanishing real  part of    v   are due  to  the sharp-edged distribution, 

Eq.   (2).     This sharp edge  can be removed by joining smoothly  the distribu- 

tion of  the resonant particles to  that of nonresonant particles.    This 

introduces additional  "boundary terms"  in Eqs.   (3)  and  (6)  and,  in  the 

linearized case,  yields   the exact Landau growth rate (14), with vanishing    Re v 
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TliL-  mar  Viinltihlng of     I    m  early   times  In  Fig.   2  1H a  consequence of   the 

fact   that our  numerical results are based upon a   modified form of  (6)  which 

Includes  these "borndary terms".       f   they are omitted,   then a non-vanishing 

$  ,  of  order    y^,   is obtained  in the  initial  stages,   in agreement with (13). 

Aside from  this non-zero    $    and  the small changes in the linear growth rate, 

however,   these boundary terms do not affect  the nonlinear saturation  level. 

It  is determined by  the actual linear growth rate alone, given by either 

Eq.   (13)  or Eq.   (lit), corresponding  to  the cases with or without the sharp 

edge  in  the  distribution. 

We return now to  the dispersion Eq.   (12)   for N    "beams".     In general, 

we expect  to  find an unstable root,   v., with real part between each adjacent 

pair of w  ,  as  Illustrated in Fig.   1 for a particular choice of parameter 

values.    The associated residue values,   [^'(v«)]'1 are also shown.     The 

continuum value for  this case,  obtained from Eq.   (13),  is  indicated;   it falls 

very close  to  the fastest growing root of  the N -beam modes.     The latter also 

has  the  largest residue [^'(v^)]"   ,  and hence dominates the  linear behavior, 

leading  to a good agreement with the continuum results. 

Nonlinear  Results 

We put   (6)  and   (8),  Including "boundary terms",   into standard difference 

equation form and solve by straightforward step-ahead  in time.    The wave 

initially grows at   the growth rate  y    given by  Eq.   (16)   until a  time     t 0 NL 

at which tho orbit of the particles trapped at the trough of the wave becomes 

nonlinear.  The time for the onset of nonllnearity, t  , is approximately given 

by J   dt wb(t) = TT or ^(t^) = ^Y0/2 + 1 . After tNL  is reached, 

0 

the growth rate begins to decrease from the linear value, turns negative, and then 
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osclllate» about   zero with  the  instantaneous bounce  frequency,  as  shown  1„ 

Fig.   2.     The amplitude of   the electric  field  is   initlaliy  small,   I.e.. 

g(t-0) - ^0/yrj <   1   .     It   increases exponentially, with growth rate    v 
o 

until  tNL.  anc  then saturates at  such a  level  that   the bounce frequency of 

the trapped particle in the wave trough Is  approximately equal  to   3.2  times 

the linear growth rate.   i.e..    g - u^  .  3.2.    Thl8 ratlo    g „  saturatlon 

is  independent of  YO and other parametric values so long as g    <  1,  as 

shown in Table I.     The nonlinear frequency shift  is of the same order of 

magnitude as  the nonlinear growth rate. 

In conclusion,  we note that 

1) Treating numerically only the resonant  particles  is an efficient 

simulation technique for any problem where a small  fraction of  particles 

exchange energy with waves. 

2) The universal character  (g .  3.2)   of  the saturation level  should 

be suitable for experimental  test. 

3) Since many other  instabilities  involve the same wave-particle 

resonance mechanism as Landau's problem,  similar results are to be expected 

there as well. 
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Klgurt' Captions 

FlR-   1.       a)       Locus.   In  the  complex  cu plane,  of  roots,   v  ,   of   the multi- 

beam dispersion  Kq.   (10)   for  Nv  -   30.  with  other  parameters  equal 

to  those   in Table   1.  Case A.     The  vertical   lines  show  the   locations 

of   the  30  beams.     The point   designated with an arrow  is   the 

continuum  value of     v    given by  (13). 

b)       Relative values of   the  residues.   U/Cv^)]"1     for  the  roots 

of   (1)  shown  in  a).     As  In  a),   the  second   highest  point  is   the 

residue obtained   from the continuum form,   (12),  for  c. 

Fig.   2.       Temporal   evolution of  the  instantaneous  frequency,  u  (t)  " 
b 

1/2 
[eE(t)k/m)       ; growth rate y  , and  frequency shift,     J  , for 

case A of  Table  I.  with Nv  = 960 and  Nz  -  4.     The vertical   scale 

Is  in  the  unit of   Initial  bounce frequency,  w,    ;   the horizontal 
DO 

scale  Is   In  the unit of UJ^"1.     The  Landau  value,  y   ,  given by 

(14)     is also shown. 



TabJ_i!  I.     Summary of   parameters and  saturation amplitudes for various cases. 

1/2 
^bo "  (eltE

0'
n^ i3  the  initial  bounce frequoncy,  IA      is  the 

bounce frequency at  saturation, y    is  the Landau growth rate, 

Y0  is the actual   Initial  growth rate. 

Case A B C D E F 

a 2.IO-9 10" 7 _Q 
4.10 ' IQ"7 5.10-8 2.5.10-8 

ß 0.5 1.0 0.5 0.1 0.2 0.4 

A=k6v/u), 
bo 40 100 40 80 80 80 

U=co  /u). 
p    bo 2.104 104 2. ID4 

2.104 2.104 2.10A 

L     bo 3.93 7.85 7.85 9.82 9.82 9.82 

Yo/(l,bo 3.6 7.4 6.9 8.8 9.0 9.0 

"bf^o 3.23 3.28 3.18 3.18 3.22 3.22           I 
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Fig.  1.    a)  Locus,  in the complex u plane, of roots,  v  , of the multi-beam 

dispersion Eq.   (10)  for N    = 3Ü, with other parameters equal to those in Table I, 

Case A.    The vertical  lines show the locations of the 30 beams.    The circled 

point designated with an arrow, is the continuum value of v given by  (13). 

b)  Relative values of the residues,  Le   '(vJj'1  for the roots of (1)  shown in 

a).    As in a), the second highest point is the residue obtained from the con- 

tinuum form,  (12),  for E. 
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